纤维过滤器由于其结构简单和材料成本低而被应用于过滤领域。早在***次世界大战时就出现了以石棉纤维作为滤料的防毒面具。通常情况下,过滤效率与过滤材料中纤维的细度有紧密的关系,当纤维直径≤μm时,在压降不变的前提下,可有效提高纤维网的过滤效率。一般非织造无纺基布的纤维直径为~12μm,而亚微米纤维直径为~250nm,两者相差约两个数量级。静电纺纳米纤维纤维直径小,孔隙率高,在过滤方面有着***的应用前景。根据过滤介质的不同,一般将过滤分为空气过滤和液体过滤。目前静电纺纳米纤维在过滤领域主要应用在空气过滤和液体过滤,通过将杂质截留在膜的表面或者内部以达到净化目的。早在2007年Yun等就证实了静电纺纳米纤维膜比之商用过滤膜在空气过滤方面有着明显的优势。他们利用静电纺丝的方法制备出了平均直径在270~400nm的聚丙烯腈(PAN)纳米纤维膜。与传统的由聚烯烃和玻璃纤维制成的商用过滤器相比,静电纺制备的纳米纤维直径更均匀。测量纳米颗粒通过过滤器的渗透结果表明,静电纺丝纳米纤维膜制备的过滤器的过滤效率是纳米纤维膜厚度的函数,在与商业过滤器具有相同的过滤效率时,所需要的纤维膜的厚度更小质量更轻。聚酰胺(PA)、聚碳酸酯。 静电纺丝法制备的纳米纤维特征符合一个好的传感器的需要。天津静电纺丝机解决方案
由于全球性水资源的匮乏,污水处理问题引起人们极大地关注,早在19世纪便开始了液体过滤技术的相关研究。传统液体分离技术能耗高,效率低,人们需要一种高效低耗的技术取代传统液体分离技术,膜分离技术应运而生。膜技术可根据膜分离原理和膜性质分类,如微滤(MF),超滤(UF),纳滤(NF)等。与通过其他方法制造的膜相比,通过静电纺丝制备的纳米纤维膜效果更好,因为它们的孔隙率更高并且孔径可以从亚微米水平到几微米进行定性优化。由于滤膜孔隙极小,可以在一定的推动力作用下去除水中的细菌、病毒、有机物和溶解性物质等。这就要求液体滤膜比起空气滤膜需要更强的物理机械性能、防污性、耐受性以及恰当的亲疏水性等。静电纺丝是一种可行的技术,用于制造具有高表面孔隙率和互连孔结构的膜材,用于压力驱动的分离过滤过程。由于静电纺丝不能一步生成具有纳米尺寸孔的致密膜,因此大多数先前的工作集中于膜的设计和开发以探索其应用。然而,缺乏对高压下选择性层的稳定性的研究,膜在实际水处理中防污性能以及规模化生产限制了它们的实际应用。 大规模静电纺丝机费用是多少江苏飙鲛新材料科技有限公司研发的静电纺丝量产机与您共创新未来。
静电纺丝就是高分子流体静电雾化的特殊形式,此时雾化分裂出的物质不是微小液滴,而是聚合物微小射流,可以运行相当长的距离,**终固化成纤维。静电纺丝是一种特殊的纤维制造工艺,聚合物溶液或熔体在强电场中进行喷射纺丝。在电场作用下,针头处的液滴会由球形变为圆锥形(即“泰勒锥”),并从圆锥前列延展得到纤维细丝。这种方式可以生产出纳米级直径的聚合物细丝。中文名静电纺丝外文名Electrospinning提出时间1987年1月22日适用领域范围纺织目录1影响因素2技术发展静电纺丝影响因素编辑1,聚合物的分子量,分子量分布和分子结构(分支,线性等)2,溶液性质(浓度,粘度,电导率,表面张力,液体流量等)3,电动势大小4,毛细管和收集屏幕之间的距离5,环境参数(温度,湿度和室内空气流速)6,收集装置的运动规律7,喷丝口针头形状静电纺丝技术发展编辑静电纺丝技术的起源“静电纺丝”一词来源于“electrospinning”或更早一些的“electrostaticspinning”,国内一般简称为“静电纺”、“电纺”等。1934年,Formalas发明了用静电力制备聚合物纤维的实验装置并申请了**,其**公布了聚合物溶液如何在电极间形成射流,这是***详细描述利用高压静电来制备纤维装置的**。
静电纺丝技术是目前为止获取纳米纤维相对简单有效的方法之一,但产量低一直是限制其大规模运用的瓶颈。本公司自主研发的多微孔静电纺喷头装置,在一定程度上提高了静电纺丝的产率。纳米纤维具有比表面积大、孔隙率高等特点,因而可应用于高效过滤材料、生物材料、高精密仪器、防护材料、纳米复合材料等领域。20世纪90年代纳米技术研究的升温,使纳米纤维的制备迅速成为研究热点。静电纺制备聚合物纳米纤维具有设备简单、操作容易等特点,是目前为止制备聚合物连续纳米纤维的重要的方法之一。应用领域:生物高分子、通用高分子、预聚体纳米纤维制备。高分子共混物纳米纤维的制备。具有纳米孔洞、纳米颗粒、纳米珠串结构的表面或薄膜的制备应用范围非常***:医药:药物载体;止血材料;创伤材料;高性能口罩等。化妆品:皮肤清洁剂;面膜等。服装:防护服(防毒);内衣(保温、防寒);登山服(轻薄、防湿、保温)。组装工程支架材料:皮肤再生用多孔质膜;人造血管;骨、软骨、牙等再生用三维构造体。静电纺丝技术制得的纤维膜呈网状结构,很适合作为氧化还原类催化剂的负载材料。
被公认为是静电纺丝技术制备纤维的开端。但是,从科学基础来看,这一发明可视为静电雾化或电喷的一种特例,其概念可以追溯到1745年。静电雾化与静电纺丝的**大区别在于二者采用的工作介质不同,静电雾化采用的是低粘度的牛顿流体,而静电纺丝采用的是较高粘度的非牛顿流体。这样,静电雾化技术的研究也为静电纺丝体系提供了一定的理论依据和基础。对静电纺丝过程的深入研究涉及到静电学、电流体力学、流变学、空气动力学等领域。20世纪30年代到80年代期间,静电纺丝技术发展较为缓慢,科研人员大多集中在静电纺丝装置的研究上,发布了一系列的**,但是尚未引起***的关注。进入90年代,美国阿克隆大学Reneker研究小组对静电纺丝工艺和应用展开了深入和***的研究。特别是近年来,随着纳米技术的发展,静电纺丝技术获得了快速发展,世界各国的科研界和工业界都对此技术表现出了极大的兴趣。此段时期,静电纺丝技术的发展大致经历了四个阶段:第一阶段主要研究不同聚合物的可纺性和纺丝过程中工艺参数对纤维直径及性能的影响以及工艺参数的优化等;第二阶段主要研究静电纺纳米纤维成分的多样化及结构的精细调控。静电纺丝法是一种简单而通用的制备纳米材料的技术。天津静电纺丝机解决方案
为增加静电纺丝机的产量和提高制备效率,江苏飙鲛新材料科技有限公司成功研发了生产用喷头。天津静电纺丝机解决方案
将产生一个向外的力,对于一个半球形状的液滴,这个向外的力就与表面张力的方向相反。如果电场力的大小等于高分子溶液或熔体的表面张力时,带电的液滴就悬挂在毛细管的末端并处在平衡状态。随着电场力的增大,在毛细管末端呈半球状的液滴在电场力的作用下将被拉伸成圆锥状,这就是Taylor锥。当电场力超过一个临界值后,排斥的电场力将克服液滴的表面张力形成射流,而在静电纺丝过程中,液滴通常具有一定的静电压并处于一个电场当中,因此,当射流从毛细管末端向接收装置运动的时候,都会出现加速现象,这也导致了射流在电场中的拉伸,**终在接收装置上形成无纺布状的纳米纤维。1934年,Formalas发明了用静电力制备聚合物纤维的实验装置,并申请了专利。该**公布了聚合物溶液在电极间怎样形成射流,详细描述了利用高压静电来制备纤维装置的**,被公认为静电纺丝技术制备纤维的开端。但是,在静电纺丝技术刚产生时,并未引起人们的重视。20世纪30年代末到80年代期间,静电纺丝技术发展缓慢。直到20世纪90年代以后,纳米技术开始飞速发展。2002年,Loscertales等***提出了一种由粗细不同的2根毛细管共同组成的同轴静电喷雾装置,这一技术扩展至静电纺丝体系,称为同轴纺丝法。
天津静电纺丝机解决方案
江苏飙鲛新材料科技有限公司是一家有着雄厚实力背景、信誉可靠、励精图治、展望未来、有梦想有目标,有组织有体系的公司,坚持于带领员工在未来的道路上大放光明,携手共画蓝图,在江苏省等地区的机械及行业设备行业中积累了大批忠诚的客户粉丝源,也收获了良好的用户口碑,为公司的发展奠定的良好的行业基础,也希望未来公司能成为*****,努力为行业领域的发展奉献出自己的一份力量,我们相信精益求精的工作态度和不断的完善创新理念以及自强不息,斗志昂扬的的企业精神将**江苏飙鲛新材料科技供应和您一起携手步入辉煌,共创佳绩,一直以来,公司贯彻执行科学管理、创新发展、诚实守信的方针,员工精诚努力,协同奋取,以品质、服务来赢得市场,我们一直在路上!